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Remark on mass and uniqueness conditions for homogeneous 
covariant equations 
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Mathematics Department, University of Aston in Birmingham, Gosta Green, Birmingham 
B4 7ET, UK 
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Abstract. New mass and uniqueness theorems, given by Cotlescu for first- and second- 
order homogeneous covariant equations, yield new theories. It is shown that the new 
theories all exhibit zero charge and energy density. 

Recently Cotiescu (1976) has given new necessary and sufficient mass and uniqueness 
conditions on first- and second-order homogeneous covariant equations (Tung 1967). 
These conditions allow for a wider class of unique mass equations than those previously 
treated. It is the object of this paper to point out that the new equations obtained will, 
however, have zero charge and energy density. For first-order equations this has been 
known for some time, while the analogous proof for second-order equations is given 
below. 

The equations have the momentum-space form: 

qYE(p/q)+(p)  = mY+(p)  (1) 
where q = (p2)1'2, y = 1 , 2  is the order of the equation, and E ( p / q )  is a matrix 
homogeneous in p / q .  For such equations to be covariant and to describe a particle with 
unique total spin, the field I) is assumed to transform according to some, in general 
reducible, representation of the Lorentz group, and in the rest frame the matrix E 
becomes a projection operator onto eigenstates with this total spin. Thus in the rest 
frame, p"' = (q, 0, 0, 0), the components of a field with given spin io and spin projection 
U will be: 

+ T ~ ( P ( ' ) ,  io, U )  = t T a j j o a s m  (2) 
where 7 labels the representation 9 ( k ,  I )  of LEp, i and s label the usual rotation basis 
eigenvectors, where j = Ik - I I ,  . . . , Ik + I1 and s = -j, . . . , j .  In this basis E will be 
represented by 

in the rest frame, where C"' are constants and depend only on the representations T, 7'. 

From (2) and (3), (1) becomes 

in the rest frame, where p = m/q. Thisis the eigenvector problem for the N x N matrix 
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C where N is the number of representations of Zp used for 4, and it generalizes the 
familiar Gel'fand-Yaglom treatment of first-order field equations (Gel'fand el a1 
1963). 

For (1) to describe a single particle, or particle-antiparticle pair if y = 1, we require a 
mass condition so that (1) only has solutions for 4 2  = m2,  and further we require that the 
solution corresponding to this given mass should be unique. Thus, the mass-spin state 
should be non-degenerate and unique. First-order theories of this type have been 
studied by Cox (1974a, b, c) .  Cotiiescu shows that these mass and uniqueness theorems 
can be expressed as the following condition on the matrix C of (3): 

C ' I Y ( C 2 I Y  -I)k = 0 (minimal equation) (5a) 

Rank[C- (rtI)'Z] = N -  1 (56) 

where r + 2 k  s yN and r / y  is an integer. The case k = 1 corresponds to the usual 
Harish-Chandra unique-mass condition, and also that imposed by Tung. Equation 
(5a) ensures that only states with mass m can occur, while equation (5b) ensures that 
the state corresponding to this mass is unique. 

As an example, Cotaescu considers the first-order equation 

corresponding to E ( p / q )  = q-'p,p,, based on the representation: 

&?a(& = 71 LI 9($0) = 72. 

71 = &?a(lt) 

72 = 9(0$> 

This is the same representation as used for the Rarita-Schwinger spin-; theory, but the 
absence of the linkage ~ ~ - 7 ~  eliminates the spin-; state, and the P, are chosen such that 
a unique spin-; state is exhibited. The theory is completely determined by covariance 
and the form of Po, and a number of theories can be obtained by fixing the minimal 
equation of Po in accordance with the conditions (5) .  The choice of P o ( P ; - I )  = 0 for 
minimal equation yields the spin-4 equations already studied by Capri (1969), while the 
choice 

= 0 

Rank& f I )  = 3 

yields new equations, for which Po has the form: 

0 2 0 - l /a  O I .  -1 /u  0 2 
P O  = 

L o  0 a 0 1  

We should point out, however, that this form, given by Cotiiescu, fails to take account of 
the L,agrangian origin for the theory. In order that (6) is deducible from a real invariant 
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Lagrangian density it is necessary that an invariant Hermitian operator 77 should exist 
such that 

PA77 = 7PO (9) 

(Tung 1967). In the representation (8) it is always possible to choose 77 to take the form 

where c = f 1 (7 can only connect conjugate representations, and one can always scale 
the basis vectors to make the non-zero elements f 1). Equation (9) can then be satisfied 
only if a2 = 1, so this is an extra condition on Po. 

The theory defined by (8), with a’= 1, is thus derivable from a Lagrangian and 
satisfies the mass and uniqueness condition ( 5 ) .  However, this new spin-; theory will 
have zero charge and energy density, because of the repeated factors corresponding to 
non-zero eigenvalues in the minimal equation. It is a well known result in the theory of 
first-order equations of the form (6)  that the charge and energy density of the physical 
states of the field 1/1 will be non-zero if and only if the minimal polynomial of Po contains 
no repeated factors corresponding to non-zero eigenvalues (see for example Cox 
1974a, b, c, Udgaonkor 1952, Speer 1969). Thus, the non-zero eigenvalues part of Po 
must be diagonalizable. Any non-diagonalizability of the Po (and this is essential for 
high-spin theories quantizable without use of an indefinite metric) must arise from 
repeated zero eigenvalues, which in fact correspond to the constraints in the theory. 

For first-order theories the minimal polynomial of Po has to be of the form 

m ( A ) = A q  ( A ’ - ” )  
i = l  

where q + 21 S N, and the mi are distinct and non-zero. The uniqueness condition then 
implies that the characteristic polynomial of Po must be of the form 

I 

A ( A )  = hN-” n (A ’ - m:) 
1 = 1  

(Cox 1974a, b, c). Thus, for first-order theories (y = l ) ,  all of CotBescu’s new equations 
arising from ( 5 )  with k > 1 will have zero charge and energy density-including his 
spin-; example. We now show that this also holds for the second-order equation 
(Y = 2). 

The form of (1) when y = 2, in coordinate space, is 

(y f iYdpdy  -m2)1/1(x) = 0 (1 1) 
where y p Y  = y Y f i  are as given by Tung (1967). In the rest frame this equation becomes 

(yo’$ - m2)+ = o 
and if we take a plane wave representation for +, + = 6 elPx this becomes the eigenvector 
problem for the matrix yo’ (cf (4)) 

( y O0 - p ’)[ = 0 

where p = m/q,  and 6 carries the spin indices. As usual, we suppress the spin and spin 
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projection indices, and regard yo’ as an N x  N matrix, and 6 as an N X 1 vector. Thus, 
comparing with (4), C = yo’. 

The equation (1 1) can be derived from the Lagrangian density 

9 = &J~pwa,aw+ + a,a,(/lyp”+)- m2J+ (13) 

where I,& = ++v, and yW’+v = v y F y  (Tung 1967). The classical free charge-current 
density vector calculated from this is 

j, = ie(t+Fyp”dq+ -a,tJf‘”+) 
so the charge density is 

p = i~(JypOa,+-a,t,iypO+) 

in natural units. We can now evaluate this in the rest frame, since if it vanishes in the rest 
frame it vanishes in all frames. Taking the plane wave representation for the field +, 
+ = 6 elpx, p becomes a quantity like 

p - kfyo06 = k p  ’f6 

where 6 is the eigenvector of yo0 corresponding to the eigenvalue p 2 ,  from (12 ) .  The 
energy density too will reduce to the form c&. 

Now assume, with Cotiescu, that the minimal equation of yo’ is of the form 

(yo0)’(yo0- l)k = 0 (14) 

where k 5 1, so that the only non-zero value of p 2  is 1, giving unique mass. Then the 
eigenvector corresponding to the eigenvalue 1 is 

5 = ( y o O ) ‘ ( y O o -  1y-14 

where 4 is an arbitrary vector. (Clearly yo’,$=[, also by definition of the minimal 
polynomial 6 is non-zero, and by (56) it is unique.) We therefore have 

& = 4+(yoo)‘+(@o+- l ) k - l v ( Y O O ) ‘ ( Y O O -  1y-14 
= ($+v(Y00)2’(Y00-  1 ) 2 ( k 4 ) 4  

and using (13), & = 0 if k > 1 by the minimal equation (14). We can only obtain 
non-zero charge or energy density when k = 1, which is the same conclusion as for the 
case of first-order equations. 

We can verify this directly for CotBescu’s example, using the form corresponding to 
(lo), which is derivable from a Lagrangian. The eigenvectors of Po are 6* = (a, *l, 1, 
* a )  and substituting from (10) we obtain z+S+ = 0 = f-6- using u 2  = 1. Thus the spin-; 
example has zero charge and energy density, as do all theories satisfying (9, with k > 1. 
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